DESIGN AND DEVELOPMENT OF A GRAMMAR
ORIENTED PARSING SYSTEM

Devin D. Cook

B.S., California State University, Sacramento, 1997

PROJECT

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE
COMPUTER SCIENCE

at

CALIFORNIA STATE UNIVERSITY,

SACRAMENTO

SUMMER

2004

DESIGN AND DEVELOPMENT OF A GRAMMAR
ORIENTED PARSING SYSTEM

A Project
by
Devin D. Cook
Approved By:
Du Zhang 8/24/2004
Dr. Du Zhang, Committee Chair Date
Anne-Louise Radimsky 8/24/2004

Dr. Anne-Louise Radimsky, Second Reader Date

Student: Devin D. Cook
| certify that this student has met the requirements for the format contained in the University format
manual, and that this Project is suitable for shelving in the Library and credit is to be awarded for the

Project.

Du Zhang (for Dr. Cui Zhang) 8/24/2004

Dr. Cui Zhang, Graduate Coordinator Date

Abstract

of

DESIGN AND DEVELOPMENT OF A GENERALIZED
PARSING GENERATOR

by

Devin D. Cook

Currently, the most common approach used to create parsers is by using compiler-compilers.
Compiler-compilers such as YACC and ANTLR allow the developer to integrate the grammar with the
source code which defines the actions of the parse. The software then, subsequently, creates a parser

program.

However, since each compiler-compiler is designed for a specific implementation language,
different parser generators must be written for each language. Most of the common programming languages
are supported by one suite or another, but newer languages and specialized languages do not have such
suites. As a result, the field consists of several different parser generators with different features, interfaces

and grammars.

The goal of this project is to design and implement a parsing system that can support multiple

implementation languages and, as a result, create a consistent development platform.

Du Zhang 8/24/2004
Dr. Du Zhang, Committee Chair Date

ACKNOWLEDGEMENTS

A large number of people have contributed to the completion of this project. First off, | would like
to thank my family for their continual support. In particular, I would like to thank my father, Dwight Cook,

and my mother, Judy, for being constant positive influences.

I would also like to thank Dr. Du Zhang for his hard work as First Reader. His dedication and
generous help with this project is deeply appreciated. | also enjoyed all the discussions we have had about

politics, computer science and other various topics. The free lunches were always appreciated too!

I would like to thank Dr. Anne-Louise Radimsky for her hard work as Second Reader. Her keen
eye helped me refine my terminology and understanding of parser theory. | am also grateful for the kind

words and talks we have had over the years.

I would like to acknowledge Dr. Cui Zhang for her hard work as Graduate Coordinator. Her
constant and persistent help - making sure that all the required forms and documents were filed on time - is

deeply appreciated.

Finally, I would like to thank all the professors in the College of Engineering and Computer
Science and all those professors throughout CSU, Sacramento from whom | have learned so much. Their
expertise, hard work, patience and kindness serves as the backbone of an outstanding center of higher

learning.

Table of Contents

TABLE OF CONTENTS ...ttt bbbt e bt bbbt b e e e nennearenns Vi
TABLE OF FIGURES.ottt b bt et s et e st e st e e be e teaneesbeesaeenbeebeenbe e X1
TABLE OF TABLESottt bbbttt b e b e et e e bt e e ae e sae e sbeebeanbeens XVI
L INTRODUGCTION ...ttt e e e e s e e e Rt e e bt e b e e sn e e s b e nreenreenreeeesnneenes 1
1.1, STATEMENT OF PROBLEM.cittitiitiiiieiieitias sttt sttt sh et e bt ah ket een e ar et 1
1.2, PROJECT INAME ..ottt bbb bbbt e b b sr ettt 2
1.3. CLARIFICATION OF TERMSiitiiiiiiiiiiciie ittt sttt sh bbb bbb bbb 3
IR T 1o T {or- 0 1] T PSS 3

I T €1 - 111111 TSP TP TP 3
IR TR TR]G T2 TSRS 4
I B B o= 7] o U TP PR 4
1.3.5. "MBLA-QIaMIMAI™ottt ettt e et s h e e s bt e bt e bt e sbeeabesbe e st e e nbeesbenbeesbeeneeas 5
IR J T /11 = T =T o U= o =SS 6

I B o U ot - g Vo 0= T T OSSR 6
1.3.8. "Implementation LangUagE"ccveieiirerire et ettt e e sr et snesre e ne e 6
1.3.9. Engine "IMplementation" ..o 7

1.4, THEORETICAL FRAMEWORKccuiitiiiieiieitiiri sttt sttt sh bbb e b b sr bbb 8
1.4. 1. REQUIAK EXPIESSIONSviitiiteitieteeitetie ettt sttt sttt e et st e bbb e e b e e e et e b sbeebesbeebeebeebeebe e e enne e 8
1.4.2. ConteXt Free GrammalrsS.........cooiiiiiiiiii i 10
1.4.3. Deterministic Finite AULOMALAccoiiirrireirseeree e 14

1.4.4. Parsing AlGOTTtNMS........oiiiiiiiiie bbb bbbttt 15

I ST =Y (- @ (0 (=T 1o To SO RURPRUPIN 20
1.4.6. CharaCter ENCOUINGc.coouiuiiiitiiie ittt sttt et bbb bt ene e e e 22
1.5, EXISTING APPROACHESottt ittt sttt et bbb e b e bbb b b et bn e 29
IS0 I 0 o o1 (=1 o] q] o] | 1T SRS 29
15,2 YACC . b bbbt 30
ST N L\ I PSSR 35

2. DESIGN L.ttt h et R R R R R R R Rt e bbbt b e ne s 37
2.1 PRIMARY GOAL ...ttt bbbt e bbb e bbbt e e e 37
2.2. PROGRAMMING LANGUAGE INDEPENDENCEccvoiuiiriitiiiisiisiiesie it 37
2.2.1. Separate the Generator from the ACtual Parser.........cccceoeveveiievesnsie e 37
2.2.2. Use the LALR AIGOITtNM ..ot 38
2.3 IMIETA-LANGUAGE ...ttt ettt et r e h ettt eb et n e e an b an et nna 39
2.4, DESIGN FLOW ..ottt bbb bbb e e an bbb e 41
3. THE BUILDER MODULEooiitietiie ettt sttt st e sbeenbeenbe b e 42
3.1 IMETA-LANGUAGEottt bbb e bbb bbb 42
3.1.1. Defining CharaCter SELScviiviieieeieie sttt te e re e nsere e eneees 42
3.1.2. Pre-Defined CharaCler SEIS.........ciuiiiiiiiiiee et 44
313, COMMENTES ...ttt bbb bt r e e bbbt e s 49
3.1.4. DefiniNg TEIMINAIS ..ottt bbbttt b e b bbbt b e e 50
3.1.5. WhiteSpace TEIMINAL.........cceciiiiiiieiecie ettt sttt te et e sr e bestesbesbeeaeere e e enre s 53
3.1.6. COMMENT TEIMINAIS.cciiiririirreierr e 55
317, DEfINING RUIES ...ttt e ne e e e e st e beaneer e e e enee s 56
3.1.8. DEfiNiNG PAGMELELScveiitiiieiiiteieie sttt b et b ettt eb e bbb 59
3L LL0. EXAMPIES ...ttt e bbbt a e bR bbbt R et et e e b b e ae b e e b e 65

3.2, PROGRAM TEMPLATES ..tvttiieiitiiitttttetes e st iettatitesesssasbbatesesesssabbaseeesesssasbebaessesssabbabeeesesssassbsbtsesesssasrrres 78

BL2.0. OVEIVIBW. ..ottt ettt e bbbt b bbbt bR b bt e bbbt bbbt bt bbb n e 78
3.2.2. PAFAMELEIS ...ttt e s 80

K T T N 1 £ OO SOOI 84
4. COMPILED GRAMMAR TABLE FILE ... 92
4. L. INTRODUCTIONccuttteeiesreseeteareseesesseseesesme e ame e s e s n e s me e s e an e s e e n e nn s e s ne e s e menn e e nenn e an e nn e enenne e ens 92
4.1.1. DeSIgN CONSIABIALIONSccviieiiieiiieiieie sttt ettt sttt b e et b et sb e et sbennere s 92
A.1.2. WRY NOE XIMIL? ..t bbbt bbbt bt bt e bt e s b e e et e nbesbe et e e e aneeneens 93
4.2, FILE STRUCTUREooitiitiitiitistiit ettt bbb bbbt h bbb e b bbb 95
4.2.1. DALA SEFUCTUIES.cviiiiitiiiiiiee e e bbb 95
4.2.2. RECOIAS ..ttt Rttt r s 96
O T 01 1 g1 SRR 97
4.3, FILE CONTENT ..ttt ettt sttt r ettt e e h R b £ e s e e e bt bbbt h b et e r e e e an et an e er e 100
4.3.1. PAAMELETS ...ttt 100
4.3.2. TADIE COUNTS.....cviiiiieiieieie e b bbbtk b bt eb e r s 101
4.3.3. Character Set Table MEMDEL ..o 102
4.3.4. SYMBOI TAble MEMDET ..ottt ra e es 103
4.3.5. RUIE TADIE MEBMDET ...ttt bbb 105
4.3.6. INTTIAT SEALES..... .ottt bttt bt bbb e bt e b e et et e sbesbesbesbeereenes 106
4.3.7. DFA State Table MemDETco.ciie e 107
4.3.8. LALR State Table MEMDET ...ttt 109
4.4. EXAMPLE COMPILED GRAMMAR TABLE FILE ...c.ocoviiiciiireiecenie s 111
I o a1 o] [T] = T -V PSR 111
A.4.2. TADIE CONTENT ..ottt bbbt b e b bbbt b et 112
4.4.3. File REPIESENTALION .. .cuiiiiiiie ittt bttt e b bbbt b e s 117

5. THE ENGINE MODULRE ...t s 119

5.1 OVERVIEW .ottt sttt h et h bbb e b bbbt bbb n bbb 119
D2, OBIECTS chttitietie ettt bkt b bbb E R R r e 121
I B O o] [-To fl o [T=] =T (o USRS 121
I 1] 10] 1] o] 1= od USSR 123
oI TR o {0 1T @ 1o PSPPSR 125
5.2.4. TOKEN ODJECL.....c.eitieeiiitiieeieete ettt bbb bbb bbbttt ne e 126
5.2.5. REAUCTION ODJECLcueiiiieiie ittt e bbbttt b e bbbt b e e e ene e e ennas 129
5.2.6. GOLDPAISEr ODJECL.....eiuiiiiiiite ettt et b e te e e e et e besbesreeneenee e eneas 131

6. TESTING AND DEVELOPMENT ..ottt ittt sttt sttt sneesneenne e 138
6.1. LALR AND DFA TABLE GENERATIONctiviuieiiireieiesreesiesreessesre e sre e sne e sne e sresne e snesne e sresnenens 138
B. 1.1, OVEIVIBW. ...tttk b bbb bbbt bbbt bbbt b ettt b et 138
6.1.2. BoOK: Crafting @ COMPILENcc.oiiiiiiiiiiee e e 139
6.1.3. Book: Modern Compiler Implementationccooiiiiiiininineeee s 143
TN =T] o [O] (=Tt OSSR 147
6.2. ENGINE DEVELOPMENT ...c.tiitiitieiti ittt sttt st bbb e sn bbb s 149
B.2.1. OVEIVIEW......eiirieeeteieri sttt r et Rt st e Rt b et n et nr e 149
6.2.2. BOOK: Crafting @ COMPILENco.oiiiiiiiiieise e e 150
6.2.3. Book: Modern Compiler Implementation ...t 153
6.3. META-LANGUAGE DEVELOPMENTeitiiiiiiieiieiiire st sre sttt s sn e sre st 157
T IMPLEMENTATION L.ttt ettt st b ettt e s et st e e sbe e neeaneesbeesbeenbeenbe e 158
7.1. BUILDER APPLICATION ..ottt ittt bbb b b bbb s 158
7.0 L. OVEIVIEW. ..ottt et e Rttt 158
7.1.2. Grammar Edit WINGOW..........cooiiiiiiiiiciie e e 161

7.0.3. Parameter WINOGOW.........oocvieiiceieee ettt ettt e ettt e sttt e e s st e e s st et s e sbaeesssabesesassessssbenesssbenesanes 162

7. 1.4, SYMBOL TADIE ... bbbttt sb e bbbt bt eneas 162
7.1.5. RUIE TaBIE WINAOW.oiiiiiiiiieiiiitiiecesi bbb 163
716, LOG WINAOW.......cuiiiiiiiiieciieieste ettt st ettt te e st e e et e s besbe st e e teeseesee e e bestesbenbesrentesneenean 164
7.1.7. DFA State Table WINOWcooiiiiiieeeesseees e 165
7.1.8. LALR State Table WINGOW.........cccooirriiirieiecsseeesree e 166
7.1.9. Grammar TESE WINUOW........coiuiiiiriiiiiinieieteste ettt 168
7.1.10. EXpOrting the Parse TabIEScoiiiiiiiiiie e et 173
T2 WWEBSITE .ottt bbb e bR bbb h bR R bR 188
7,21, INEFOAUCTION ...ttt bbbt r b 188
7.2.2. CONEFIDULONS SECLION......civieeiiiirciecre et 190
7.2.3. ONIINE DOCUMENTALION.c.vitiitiieiiitiieiisie ettt bbbttt bttt et 191
7.2.4, CHECK fOr UPAALESecviieiecicti bbbt bbbt 193

8. COMPARISON ...ttt bbb bbbttt bbbttt 196
8.1, INTRODUCTION ...ttt sttt sttt st bbb bbb e bbb e b e b b e e se b e 196
8.2. MATHEMATICAL EXPRESSIONS ..ottt s st 198
8.2.1. GOLD Meta-LanQUAagE.........cccueieerierieieiiesiesieesieesieetesseesseesteeste e e ssaessaessaesseeseeessesnessnessseenses 198
8.2.2. YACC / LEX MEta-LANGUAGE. ... c.ecueiveeeiiiteietisteietest ettt 199
8.2.3. ANTLR Meta-LanQUAGE.cceeiuieiiriiiiiie sttt sttt ettt ettt sb et ee e sae e sae e 202

0. CONCLUSION ...ttt bbb bbbttt bbb bbbt 204
0.0 RESULTS ottt bbb bbb e bR R 204
9.1.1. Multiple Programming Language SUPPOIt..........ccuerveeierereireseseereeseesieseeseeseessessessesseseeseenses 204
TN =0T o] o | PSSR 206
0.2, FUTURE WORKccutiititiie sttt ettt et sr st he s e h bbbt s e e e bbb bbb e e e e e e an et neer s 207
9.2.1. Support Additional PIAtfOrmS ..ot 207

9.2.2. SUpPOrt "Virtual” termMINalS.........cooiiiiiiiiee e 207

APPENDIX A. ENGINE CODE LISTINGccoiiiiiiiiieititse e 209
AL INTRODUCTION ...ttt sttt sttt sr bbbt bbb se bbb e b b er bbb s 209
A2 CLASSES ..ttt e 210

A.2.1. CompiledGrammarTabIEFile.........ccoviiiiiie e e 210
A2.2. FAEAG .ot e e ee et s e s s e e et et 215
R] - 1 -SSRSO 215
AL2.4. GOLDPAISETeitieit ettt ettt h e bt bt a bt b e st e e ke e nbe e ebe s b e e e aae e eaeenbeenneea 218
AL2.5. LRACHION ..ttt bbbkt b ettt b bbb ne et 237
A.2.6. LRACHONTADIE ...ttt 238
AL2.7. NUMDEISEL. ...ttt r et r et r e r e en s 240
AL2.8. ODJECTAITAY. ...ttt bbbt b ettt b bbbt bbb bt 243
AL2.9. REAUCTION ...ttt bbb bbb bbbt bbb bbbt et 245
AL2.L0. RUIE ettt bbbt E bR bbbt R e et et e b e be b reene e 248
AL2. 1L RUIBLISE .ttt et ettt b ne et b ne et 250
AL2.02. SEIBAM .. s 253
N I TR/ 111 oo P 267
A2 14, SYMBOILIST. ...ttt ee 270
LN T o= DSOS T PO URURPRO 272
AL2.16. TOKENSTACK ... ettt b bbbt e b b et e b sbeene e 275
A2.L7. VATADIE. ... bbb 278
A2.18. VATADIELIST.......cvevieece s 278
APPENDIX B. EXAMPLE PROGRAM TEMPLATE........iooi e 281
APPENDIX C. GOLD META-GRAMMAR ...ttt s 284

Xi

O I [N =] 010 o o] N PR 284

O €1 N Y | 7 - TSRO 284
APPENDIX D. LALR CONSTRUCTION TEST ..ottt stee st evtee e sven e s sran e 289
[2 1N (0] 01U Lo [0 N ORI 289
D.2. ANSI C GRAMMAR IN YACKC ...ttt ettt e et e et e e s st e e e st e e e sentee e s sabanesabbeeennes 291
D.3. SIDE-BY-SIDE COMPARISONoceiiuiiieieuteeesitereeattesessstesessssesesasstessssssessssssesesssssssesassessssssesessssersesnses 297
APPENDIX E. TEST GRAMMAIRS ...ttt ettt e st e e e e bt e s s s ban e e s srbee e 429
E.1. BASIC PROGRAMMING LANGUAGEtviiiiiiiiiitiiii e s ittt e e s s s st bttt s e s s s s st e s s s e s e s s sbb b aa e e e e s s sabbabaeeeas 429
E.2. ANSI C PROGRAMMING LANGUAGEcciiiiiiiiitiiiiie e eiitbtee e s st bate s e e s s s st s s e e e s s s s sabbaae e e s e s s sabbaaaeees 433
E.3. COBOL PROGRAMMING LANGUAGEciiiiiiiittiitt et e e eiitbtet e e s s sibbate e e s s s s sabbsae e s s s s s sabbaaeeeeesssabbaaaeeeas 440
T o N N TR 456
E.5. LISP PROGRAMMING LANGUAGEcuvtiiiiiiiiiiitiiit ettt e e ettt e s e e s s e st et s s e e e s s saab bbb e e e s e s s sabbabaeaeas 460
E.6. SMALLTALK PROGRAMMING LANGUAGE.......ccuttiiiieiiiiiittiiieee e s sttt e e e s s s sabbats s e e s s s sabbataeasesssabbaaaeaeas 461
S T | OSSPSR 466
E.8. VISUAL BASIC .INET .ottt ettt ettt e e et e e s e s s st e b e e e e e s s sabbabaeee s 471
T TR 4 | TR 484
APPENDIX F. ENGINE TEST ..ottt sttt sttt s ittt e s s et e s s s eatas s s sabt e e s st ba s s sbansessabanesssbansesns 486
R 5y = T0 1T = Y RS 486
[o = LS = I = = RO 487
APPENDIX G. CASE MAPPINGottt ettt eee st e e et ae s s sbae e e s erbeeessnbaeeeans 494
Lo Fo I L@ 1T N 2 = 1 2R 509

Xii

Table of Figures

FIgUure 1-1. "Parser’ COMPONENTS.cuiietirterterieeteeeeiestestesteste bt st aseeseeseesbesbeabeaseaseeeesbesbesbesbesbesaesbeaneaneennens 4
Figure 1-2. Example BNF RUIE DEFINTION........ccccviieiiicie ettt 11
Figure 1-3. EXamMPIe DFA Graphc.ccvoiee ettt esae st stesnesneanaenaeeeneenes 15
FIgUre 1-4. RUIE HANAIEo et ettt st na e nte s neere e e enee s 17
Figure 1-5. LR/ LALR Parse Tablecouciiiiiiiiiee st 18
Figure 1-6. Big Endian vS. Little ENGIAN........ccooiiiiiiii e e 21
FIGUIE 1-7. WINAOWS-1252.......e ittt ettt bttt et b e bbbt e e e b sbesbesaeeb e e e e b e 24
Figure 1-8. YACC/LEX DESIGN FIOWccuiiiiciicicice ettt st sttt 31
Figure 1-9. YACC / LeX Program StrUCIUIE........ucverieriereseseseseeeeieee e sieste e sresssesaessessessesnessesnsssasneessenes 31
Figure 1-10. ANTLR ODject DECIAratioN.........ccccveieriirieieiiseseeeeeee et et re e 35
Figure 2-1. Two Components & Shared File ... 38
FIGUIE 2-2. Data FIOW ...t bbb bttt b e eb e bbbt bbb e e e 41
Figure 3-1. Set SYNTaX DIAGIAMcoeiviiiie ettt e e e e st e s te s teeteese et e see st e besbesrestesaeereeneeneees 43
Figure 3-2. Commonly Used CharaCter SEt IMIAPcoeiiiiieiicecieeese ettt st 46
Figure 3-3. Terminal SYNtaX DIagram........ccccueiveiierieiiiresesesese e seee e se et re e esee e et sresresneeneeeeneeses 50
Figure 3-4. Regular EXpression SYNtaX DIAgIamcccoeiiiriiiiniiiiisicisie et 50
Figure 3-5. RUIE SYNEAX DIAGIAM ..ottt bbbt b et b et nn s 57
Figure 3-6. Parameter SYNtaX DIagramooeiioieiiiiiie ittt bbb e 59
Figure 3-7. Line Based Grammar EXAMPIE.........c.ccveiiiiiieiiieie st sn ettt sne et n e s 73
FIQUIE 3-8. Parameter SYNTAXccvciueiiiiiieitiseeieie st eie e st e te e te e e e e sae st e sbestesbesteensesee e et e sbestestesneaneeneeneees 80
Figure 3-9. SYMDOI LISt SYNTAX....c.viieriiieieiirsese et sttt te e e na e e e e e besaesreseeaneereeneeneees 84
Figure 3-10. RUIE LESE SYNTAXeiviieiiitiieeiiitireeiest sttt bttt 85

Figure 4-1. General File STIUCLUIE...........ooviiiiiiiie ettt 95

FIQUIe 4-2. RECOIT CONTENTSeiiiiiieiiieite ettt ettt bttt ettt b e b bt e b e e se e s e e b e bt sbe s bt eb e e e enbe e 97
Figure 4-3. EMPLY RECOIT ENLIY ..ottt et bbbt n e e 98
Figure 4-4. Byt RECOIT ENIYocuiiieiiiie ettt sttt st et be st e tesneene e e e e s 98
Figure 4-5. B00IEAN RECOIT ENTIY......cviiiiieiiiciie ettt sttt ettt ste e ena e e e s 98
Figure 4-6. INteger RECOI ENTIY.....cuiiiiieie sttt st ne e s e e e saenaesteaneene e e eneees 99
Figure 4-7. String RECOIT ENTIY ..ot 99
Figure 4-8. Parameter CONTENTS.......cui ittt sttt sttt ettt st b et e b et e et e se e e e besbesbesbeaneeneas 100
Figure 4-9. Table CoUNt CONTENTScvciieieiiiiie ittt sttt e te b e te e e esae e e sbesresbesreaneeneas 101
Figure 4-10. Character Set Table Member CONTENEScccveieiiiieeiieiei e eneas 102
Figure 4-11. Symbol Table MembBer CONENEScvireiirirese e enees 103
Figure 4-12. Rule Table Member CONTENES.........ccoriiiiiiieiieisiesiee sttt 105
Figure 4-13. INitial StAte CONMTENTS.......coviiiiiiiie ettt 106
Figure 4-14. DFA State Table Member CONENTS.cccoiiiiiiiiiiiiee e e 107
Figure 4-15. LALR State Table Member CONENTScccviiiieieiieie e ste e et sre e 109
Figure 4-16. File Representation of Parse INfOrmationccccveveiieieiinic s 118
Figure 5-1. Parsing ENQINe Data FIOWccccociviiiieiiri et ettt e e enees 119
Figure 5-2. ODBJECT HIBIAICNYcc.oiiiiiiieiie ettt 122
Figure 5-3. Parse Tree fOr "ath™ 0. ..ot 134
Figure 5-4. Reductions That Can Be TrmMmMEdcocoiiiiiiiiiiiiie e e 135
Figure 5-5. Parse Tree For "a+b*c" with TrimRedUCHIONS........ccceiviiiii i 135
Figure 6-1. Diagram from Crafting a Compiler, Figure 6.22, Pg 167cccoovviviieiveieereere e e e seseenens 140
Figure 6-2. Diagram from Modern Compiler Implementation, Table 3.28 (revised), pg 66.........c..cccue..... 144
Figure 6-3. GOLD Builder LALR State Table.........ccoiiiiiiiiiiieiseee e 146
Figure 6-4. Side DY Side COMPATISON.......ciuiiiitirieitieieeieie ettt bbbt e b b sbesbe e se e e ennas 146
Figure 7-1. APPHCATION LAYOULccuiitiitiitiitieieeieie ettt e b bbbttt b e b b be b b beaneeneas 159

Figure 7-2. Grammar Edit WINOW.ccoiiiiiiiiiiiecesee ettt e 161

Figure 7-3. Parameter WINGOWc..oooiiiiiiieic ettt bbbt se bbb beaneeneas 162
Figure 7-4. SymDOI Table WINGOWccuoiiiiiiiiicie ettt bbbt 163
Figure 7-5. RUIE TabIe WINAOWc.ciuiiiiieitiie ettt sttt ba e se et sn e besbesresreaneeneas 164
FIQUIE 7-6. LOG WINAOWc.eiiiiiieiir ettt sttt e et aesbeene e s e e neenaesneteseesrenreaneeneas 165
Figure 7-7. DFA State Table WINAOWcccoviiiiicicee sttt neenns 166
Figure 7-8. LALR State Table WINUOWcoooiiiiiiiiiiic et 167
Figure 7-9. Grammar TeST WINUOWciiiiiiiieieiie e ettt st sb e bbb e s 169
Figure 7-10. Test Window Parse ACLION LiSt........cccvciveieiiieiiii st se e sre e s e e eneas 170
Figure 7-11. TeSt WINGAOW Parse TIBE.......ceciieiieeeeeieiiestestesteste s e sreeae s eaestestestesteste s e esseaensestesrestasseanens 171
Figure 7-12. Export Tables t0 @ WED PAgEviviveieie et 173
Figure 7-13. GOLD Parser WEDSITE.coviiiiiiiiiieiie ettt 189
Figure 7-14. CONTIDULOIS PAJEoveiiiieieiiiieieie sttt ettt bbb 190
Figure 7-15. ONliNg DOCUMENTALION.ciiiiiiiiiieie ettt sttt ettt b bbbt eaneeneas 192
Figure 7-16. Check for Updates - Update AVailable ..o 194
Figure 7-17. Check for Updates - LateSt VEISION........ccceivcieiieiieie e se st se ettt ra e e seenes 195

XV

Table of Tables

Table 3-1. INAIVIAUAI CaraClersc.ciiiiieiieiee ittt et 44
Table 3-2. CommMONlY USEd CharaCter SBLSc.ouiiiiieieiieresic ettt e 45
Table 3-3. UNICOUE CharaCler SELS........oo ettt 47
Table 3-4. Examples of Comment TErMINaIS...........cccoviiviieiieriie st e e nae e 56
Table 3-5. Character Mapping Table........coiiiiiii e 63
Table 4-1. Parameter Content DELAINScoiiiiiiiiiee e 100
Table 4-2. Table Count Content DELAilS..........covrviiriirieiiiee e 101
Table 4-3. Character Set Table Entry Record Detailsccccvevveviiiiiiiiie e 102
Table 4-4. Symbol Table Member Content DetailS.........c.cccoviiiiiieiiiieiis e 103
Table 4-5. Symbol 'Kind' CONSIANTSccviiiiiicierieie e ee e et e stesresresneeneenes 104
Table 4-6. Rule Table Entry RecOrd DetailSccoirieiiiriiiiiiisiecre e 105
Table 4-7. Initial State RECOId DEtailScviiiiiiiiiee e 106
Table 4-8. DFA State Table Member Content Detailscccovieiiiiiiiineeesee e 107
QI 1o R e TR o [0 o PSSP 108
Table 4-10. LALR State Table Member Content DetailS.........ccccovovrrriiniincneeeseeese e 109
TabIe 4-11. ACHION 0.ttt ettt 110
Table 4-12. "ACLION" CONSLANESc.eiviiiitirietiitiit ettt b et b bbbt e bbb 110
Table G-1. CaSE IMAPPING ...eveitiiieeieie ittt b et b et e et e e e besbe s bt s b e e bt e beebeese e e et e sbesbesbesaeereenes 494

XVi

1. Introduction

1.1. Statement of Problem

When a software engineer designs and writes a program, it is often in one of the many modern
programming languages available. Rather than taking on the tedious task of writing the program using the
actual instructions used by the computer processor, the logic and behavior of the program are expressed
using human-like and English-like terms. Before this program can be compiled or interpreted, the

information must be broken down into structures of the language. This process is known as parsing.

Often the process of analyzing a source string is divided into two components which work in
tandem. The scanner (also called a tokenizer), performs lexical analysis - breaking the source string into the
reserved words, symbols and other atoms of the language. As the information is analyzed by the
scanner/tokenizer, a sequence of tokens, which represent the atoms of the source string, are created and
passed to the parser. The parser then performs syntactic analysis on the token sequence and determines if it

is structurally valid.

Currently, the most common approach used to create parsers is through compiler-compilers.
Compiler-compilers allow the developer to integrate the grammar directly with code being used to
implement the actual compiler or interpreter. The compiler-compiler then creates a new program that can
be subsequently compiled. Often the scanner and parser are integrated, but this is not always the case. The

YACC compiler-compiler (Johnson 1979) uses a separate program called Lex to generate a scanner. The

scanner is later compiled with the parser generated by YACC. ANTLR (Parr 2000), on the other hand,

generates both the scanner and parser simultaneously.

However, each of these tools is quite different — in both design and usage. As a result, developing
a parser in different implementation languages presents a much different experience. The grammar notation
used by each parser generator vary greatly in both look and behavior. In addition, how the developer

interacts with each tool is different for each.

Since each compiler-compiler is designed for a specific implementation language, different parser
generators must be written for each new or different implementation language. Most common
implementation languages are supported by one suite or another, but newer languages and specialized

languages do not have such suites.

As a result, the field consists of a myriad of different parser generators with different features,
interfaces and grammars. For those learning about parsing technology, context free grammars and other

language theory related subjects, the inconsistencies between parser generators can present problems.

1.2. Project Name

The project will be called "GOLD" which is an acronym for Grammar Oriented Language
Developer. Admittedly, this is not a particularly clever acronym, but it does (in part) represent the history

of the greater Sacramento Area.

1.3. Clarification of Terms

1.3.1. ""Source String"

The term "source string” will be used abstractly within this document to refer to the text that is
analyzed by the parser. This text can be located in a local buffer, string object, file or any other
programming language structure available to developers. Hence, the actual "location™ of the string will be

considered nebulous and not relevant within this document.

1.3.2. "Grammar"

The term "grammar" will be used broadly to refer to the syntax of a language. The grammar of
tokens is typically described by regular expressions while the grammar of a programming language can be
represented in different forms such as Backus-Naur Form, syntax charts, etc... Even though the format
used to describe a grammar can be different, the "grammar" for that language is still the same. The

grammar for LISP, for instance, is constant no matter how it is written.

Within this text, the term will also be used to describe the files used to represent the syntax on
different development platforms such as GOLD, YACC or ANTLR. Developers on these platforms write

"grammars" using the platform's particular notation.

1.3.3. "Tokenizer"

The scanner is used to perform lexical analysis of the source
string by dividing it into various pieces information known as "tokens".
These are consequently passed to the parsing algorithm which, using the
rules defined in the grammar, performs syntactic analyzes and determines

when rules are complete

The scanner is commonly referred to as a "lexical analyzer",
"tokenizer" and "lexer". All three of these terms are equivalent and used
interchangeably by different texts. This text will use the term "tokenizer"
given that emphasis will be placed on the creation of tokens by the

system.
Figure 1-1 contains the data flow of a "parser”. The unrounded

boxes represent different components while the rounded boxes represent

input/output flowing thru these components.

1.3.4. ""Parser""

Source String

!

"Parser"

Lexical Analysis
(Tokenizer)

Tokens

«'

Syntactic Analysis
(Parsing Algorithm)

Parse Tree

«'

Back End of a Compiler
or Interpreter

Execution

I}

Figure 1-1.
"Parser' Components

The term "parser™ is used in many contexts. In most cases, a parser — which performs the syntactic

analysis of a token sequence — is used in tandem with the scanner — which creates that sequence. As a

result, the term "parser" often is used to refer two both components.

To avoid confusion, the component which performs the syntactic analysis will be referred to as
the "parsing algorithm" within the text. The term "parser" will be used abstractly to refer to both the

scanner (tokenizer) and the actual parsing algorithm.

1.3.5. ""Meta-grammar"’

Each of these different parsing systems, such as YACC and ANTLR, use a different notation for
describing a grammar. Even though Backus-Naur Form is a widely accepted notation, each parsing system

uses a specialized notation to meet its particular needs.

In fact, a grammar written for different parsing systems will use different notations to describe
terminals, rules and other information vital to system. Essentially, these different notations have their own

syntax, and, in this sense, they also have grammars.

Needless to say, this text will refer often to grammars used to describe programming languages
and the grammars used to describe these grammars. This can easily lead to confusion or misinterpretation.

To avoid both, the notation that used to describe a grammar will be referred to as a "meta-grammar".

Since each parsing system uses a different format, the term will be further clarified by adding the
name of the parsing system. For instance, the syntax used to describe a grammar using YACC will be
referred to as the "YACC meta-grammar”. For this system, GOLD, the phrase "GOLD meta-grammar" will

be used.

1.3.6. ""Meta-language™

Although the specifics of different meta-grammars are important, the actual semantics — how the
meta-grammar is interpreted — is equally important. For instance, the %token" tag in YACC defines a very
specific aspect on how the text will be interpreted. The content of this information will greatly change the

meaning of the YACC grammar file.

When it is necessary to refer to both the syntax (meta-grammar) and the associated semantics, the
term "meta-language” will be used. Basically, the syntax of a meta-language is specified using a meta-

grammar.

1.3.7. ""Source Language"*

Often in the text, it will be necessary to distinguish between the language being created by the
developer, the broad topic of "programming languages”, and the programming language being used to
develop the compiler and/or interpreter. To avoid confusion, the term "source language" will refer

specifically to the language being designed.

1.3.8. ""Implementation Language"

The term "implementation language"” will refer specifically to the host programming language
being used to develop the interpreter and/or compiler. In other words, if the developer is creating a

programming language "X" using C++ to parse and compile "X", the implementation language is C++.

1.3.9. Engine "Implementation™

The Engine component of the GOLD parsing framework can be implemented in different
programming languages and for different integrated design environments (IDEs). The exact nature of the

Engine is described in Section 2.

To distinguish between, for instance, an Engine written to work with C++ and another designed to
work with Visual Basic, the term "implementation” will be used. In other words, a C++ Implementation of

the Engine can be created as well as a Visual Basic Implementation.

1.4. Theoretical Framework

1.4.1. Regular Expressions

A Regular Expression is a simple, yet powerful, notation that is used to represent simple patterns.
They are used extensively in programming language theory. In particular, Regular Expressions are used to
describe the "terminals" of a programming language. The term "terminal” refers to the reserved words,

symbols, literals, identifiers, etc... which are the basic components of a programming language.

A set of identifiers such as "Student”, "Test" and "Stress" are in all the same category of terminal —
an identifier. Even though the individual meaning of each identifier varies, each represents the same type of

data and, consequently, has an same effect on the syntax of a program.

When a program is analyzed, the text is chopped into different logical units by the scanner. The
scanner produces a number of "tokens" which contain the same information as the original program. Of
course, the scanner has the ability to ignore information such as comments. While terminals are used to
represent the classification of information, tokens contain the actual information. Essentially, the category

of token is its associated terminal.

For instance, the identifiers "Student", "Test" and "Stress" are different tokens since they contain

actual information. On the other hand, each is the same type of token — an identifier terminal.

Terminals are typically recognized by using the pattern of the information. Traditionally,
identifiers consist of a letter followed by a series of zero or more alphanumeric characters. Various

programming languages use variations of this scheme, often allowing the use of underscores or dashes.

Regular expressions are used to describe these kind of patterns. The notation consists of
expressions constructed from a series of characters. Sub-expressions are delimited by using parenthesis ‘('
and ')'. The vertical-bar character '|' is used to denote alternate expressions. Any of these items, can be

followed by a special character that specifies the number that can appear in sequence.

* Kleene Closure. This symbol denotes 0 or more or the specified characters or expressions

+ One or more. This symbol denotes 1 or more of the specified characters or expressions

? Optional. This symbol denotes 0 or 1 of the specified characters or expressions

For example, the regular expression ab* translates to "an a followed by zero or more b's". Examples
include: a, ab, abb, abbb, etc.... The regular expression (a]b]c)+ translates to "a series of one or more

expressions where each expression can be an a, b or ¢". Examples include: abb, bcaac, ccba, etc...

Many scanner generators and parsing systems have expanded the notation to include set literals
and sometimes named sets. In the case of Lex, literal sets of characters are delimited using the square
brackets '[' and ' and named sets are delimited by the braces '{' and '}'. For instance, the text "[abcde]"
denotes a set of characters consisting of the first five letters of the alphabet while the text "{abc}" refers to
a set named "abc". This type of notation permits a short-cut notation for regular expressions. The

expression (a]b]c)+ can be defined as [abc]+ .

10

1.4.2. Context Free Grammars

Grammars provide rules that specify the structure of languages, independently from the actual
meaning of the content. Grammars are classified according to the complexity of the structure they describe.
The class of context free grammars (CFG) is the most common one use to describe the syntax of
programming languages. In this class, the category a token belongs to (e.g. reserved words, identifiers,

etc.) is what matters rather than the specific token (e.g. the identifier xyz).

In addition, the formatting of the program (the content of whitespace) and the actual text of
identifiers does not affect the syntax of the grammar. This is very important in parsing technology.

Grammars that are not context free cannot be parsed by the LR, LALR or LL parsing algorithms.

1.4.2.1. Backus-Naur Form

Backus-Naur Form (Fischer 1988), or BNF for short, is a notation used to describe context free
grammars. The notation breaks down the grammar into a series of rules - which are used to describe how

the programming languages tokens form different logical units

The actual reserved words and recognized symbol categories in the grammar represent
"terminals”. Usually, terminals are left without special formatting or are delimited by single or double

quotes. Examples include: if, while, '=" and identifier.

In Backus-Naur Form, rules are represented with a "nonterminal” - which are structure names.
Typically, nonterminals are delimited by angle-brackets, but this is not always the case. Examples include

<statement> and <exp>. Both terminals and nonterminals are referred to generically as "symbols". Each

11

nonterminal is defined using a series of one or more rules (also called productions). They have the

following format:

where N is a nonterminal and s is a series of zero or more terminals and nonterminals. Different
alternatives for rules can be specified in Backus-Naur Form. For readability, often productions are grouped

together and separated by a vertical bar symbol which is read as the word “or”.

In summary , there are slight variations in use, but the notation has the following properties.
e Arrule/ production starts with a single nonterminal.
e This nonterminal is followed by the symbol : - = which means “is defined as”. The ::= symbol
is often used interchangeably with the — symbol. They both have the same meaning.

e The symbol is followed by a sequence of terminals and nonterminals.

The following chart identifies the various parts of a rule definition.

Terminal Nonterminal
<Stm>::= if <Exp> then <Stmts> end

Figure 1-2. Example BNF Rule Defintion

For example, the following defines a rule for <Value> that can contain either an Identifier terminal

or a nonterminal <Literal>

12

<Value> ::= ldentifier | <Literal>
<Literal> ::= Number | String

The <Literal> rule can contain either a Number or a String terminal. As a result of this

definition, a <Value> can lead to an Identifier, a Number or a String.

Rules can also be recursively defined. The following rule defines a sequence of one or more Identifiers.

<ldentifiers> ::= ldentifier <ldentifiers>
| Identifier

1.4.2.2. Extended BNF

There is another version of BNF called Extended BNF, or EBNF (ISO/IEC 14977), for short. This
variant was originally developed by Niklaus Wirth to define the syntax for the Pascal Programming
Language. The notation was designed to simplify the notation of BNF by allowing the developer to use

special notation for defining lists and optional sets of symbols.

Variations between different versions of EBNF exist, but most use similar notation. Square
brackets "[...]" are used to denote optional elements of a rule. Elements of a rule can also be grouped
together using braces "{ ... }'* which denotes a repetition of zero to infinity. Symbols can also be grouped
using parenthesis "(...)" and followed by a Kleene closure. In this case, the semantics are identical to those

used in Regular Expressions.

13

This format, while powerful, creates a number of implied rules. For instance, if the programmer
was to define a rule with an optional clause, the system would have two distinct forms of the rule - the one
with the clause and one without. This is also the case with lists and other enhanced features. For instance,

the If-then-else statement could be defined as:

<If Stm> ::= IF <Expression> THEN <Stms> [ELSE <Stms>]

This would create the following rules:

<If Stm> ::= IF <Expression> THEN <Stms>
| IF <Expression> THEN <Stms> ELSE <Stms>

14

1.4.3. Deterministic Finite Automata

Most parser engines implement the scanner as a Deterministic Finite Automaton (Louden 1997).
The Lex scanner generator is one example. The scanner scans the source string and determines when and if

a series of characters can be recognized as a token.

Essentially, regular expressions can be used to define a regular language. Regular languages, in
turn, exhibit very simple patterns. A deterministic finite automaton, or DFA for short, is a method if

recognizing this pattern algorithmically.

As the name implies, deterministic finite automata are deterministic. This means that from any
given state there is only one path for any given input. In other words, there is no ambiguity in state
transition. It is also complete which means there is one path from any given input. It is finite; meaning there
is a fixed and known number of states and transitions between states. Finally, it is an automaton. The
transition from state to state is completely determined by the input. The algorithm merely follows the

correct branches based on the information provided (Cohen 1991).

A DFA is commonly represented with a graph. The term "graph" is used quite loosely by other
scientific fields. Often, it is refers to a plotted mathematical function or graphical representation of data. In

computer science terms, however, a "graph" is simply a collection of hodes connected by vertices.

The figure below is a simple deterministic finite automaton that recognizes common identifiers

and numbers. For instance, assume that the input contains the text "gunchy". From State 1 (the initial state),

15

the DFA moves to State 2 when the "g" is read. For the next five characters, "u", "n", "c", "h: and "y", the

DFA continues to loop to State 2.

Identifier

A..Z, a...z,0...9

Number

0..9

Figure 1-3. Example DFA Graph

By design, the scanner attempts to match the longest series of characters possible before accepting
a token. For example: if the scanner is reading the characters "count” from the source, it can match the first
character "c" as an identifier. It would not be prudent for the scanner to report five separate identifiers: "c",

"o", "u", "n" and "t". Each time a token is identified, the scanner restarts at the initial state.

1.4.4. Parsing Algorithms

The primary goal a parser is to organize a sequence of tokens based on the rules of a formal
language. As the parser accepts a sequence of tokens, it determines, based on this information, when the
grammar's respective rules are complete and verifies the syntactic correctness of the token sequence. The
end result of the process is a "derivation" which represents the token sequence organized following the

rules of the grammar.

16

Typically, Backus-Naur Form is used to define the context free grammar used by the language.
The entire language, as a whole, is represented through a single nonterminal called the "start symbol".
Often the parse information is stored into a tree, called a derivation tree, where the start symbol is the root

node.

There are two distinct approaches currently used to implement parsers. Recursive Descent Parsers
and LL parsers are examples of top-down parsers and